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spinor in N = (1,0) gauge supergravity in six dimensions coupled to a single tensor mul-
tiplet, vector multiplets and hypermultiplets. These are shown to imply most of the field
equations and the remaining ones are determined. In this framework, we find a novel 1/8
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tivated scalars parametrize a 4 dimensional submanifold of a quaternionic hyperbolic ball.
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Zwiebach tear-drop which is noncompact with finite volume. While the electric charge
carried by the dyonic string is arbitrary, the magnetic charge is fixed in Planckian units,
and hence necessarily non-vanishing. The source term needed to balance a delta function
type singularity at the origin is determined. The solution is also shown to have 1/4 super-
symmetric AdSs x S3 near horizon limit where the radii are proportional to the electric
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1. Introduction

Anomaly-free matter coupled supergravities in six dimensions naturally arise in K3 com-

pactification of Type I and heterotic string theories []. Owing to the fact that K3 has no

isometries, all of the resulting 6D models are ungauged in the sense that the R-symmetry

group Sp(1)g, or its U(1)g subgroup thereof, is only a global symmetry. The R-symmetry

gauged general matter coupled models, on the other hand, have been constructed di-

rectly in six dimensions long ago [, B]. These theories harbor gravitational, gauge and



mixed anomalies which can be encoded in an 8-form anomaly polynomial, and the Green-
Schwarz anomaly cancelation mechanism requires its factorization. It turns out that the
R-symmetry gauging reduces drastically the space of solutions to this requirement.

At present, the only known “naturally” anomaly-free gauged supergravities in 6D are:

o the F7 x Eg x U(1) g invariant model in which the hyperfermions are in the (912,1,1)
representation of the gauge group [f],

e the F; x Gy x U(1)R invariant model with hyperfermions in the (56, 14,1) represen-
tation of the gauge group [f], and

e the Fy x Sp(9) x U(1)g invariant model with hyperfermions in the (52,18, 1) repre-
sentation of the gauge group [f].

The anomaly freedom of these models is highly nontrivial, and they are natural in
the sense that they do not contain any gauge-singlet hyperfermions. If one considers a
large factor of U(1) groups, and tune their U(1) charges in a rather ad-hoc way [ff], or
considers only products of SU(2) and U(1) factors with a large number of hyperfermions,
and tune their U(1) charges again in an ad-hoc way, infinitely many possible anomaly-free
combinations arise [f]. These models appear to be “unnatural” at this time.

In fact, none of the above mentioned models, natural or not, have any known string/M-
theory origin so far, though progress has been made in embedding [§] a minimal sub-
sector with U(1)g symmetry and no hyperfermions [fJ] in string/M theory. An apparently
inconclusive effort has also been made in [[[(] in which the 6D theory is considered to live
on the boundary of a 7D theory, which, in turn is to be obtained from string/M-theory.

Finding the string/M-theory origin of the anomaly free models mentioned above is
likely to uncover some interesting mechanisms for descending to lower dimensions start-
ing from string/M-theory. Moreover, models of these type have been increasingly finding
remarkable applications in cosmology and braneworld scenarios [[L]—[Lq].

In this paper, we will not address the string/M-theory origin of the 6D theories at hand
but rather investigate the general form of their supersymmetric solutions, and present, in
particular, a dyonic string solution in which the hyperscalar fields have been activated.
Our aims are:

e to lay out the framework for finding further solutions which, in turn, may lead to
new solutions in other theories of interest that live in diverse dimensions,

e to establish the fact that (dyonic) string solution exists in a more general situation
than so far that has been known, in the sense that new type of fields, to wit, hyper-
scalars, have been activated, and

e to open new avenues in the compactification schemes in which the sigma model sector
of supergravity theories are exploited.

These aims call for a modest summary of what has been done in these areas so far.
To begin with, the general form of supersymmetric solutions in 6 have been studied



in [[[7, [(§], though in the absence of hypermultiplets. We will fill this gap here. We will
extend the analysis for the existence of Killing spinors, determine the resulting integrability
conditions and the necessary and sufficient equations for finding exact solutions, without
having to directly solve all the field equations.

Second, various dyonic string solutions of 6D supergravities exist in the literature [[[J—
R3], though again, none of them employ the hypermatter. We will find some novel features
here such as the necessity to switch on the magnetic charge of the dyonic string.

Third, concerning the use of (higher than one dimensional) sigma model sector of
supergravity theories in finding exact solutions, in the case of ungauged supergravities the
oldest result is due to Gell-Mann-Zwiebach [RJ] who found the half-supersymmetry breaking
tear-drop solution of Type IIB supergravity, by exploiting its SU(1,1)/U(1) sigma model
sector. The tear-drop represents the two-dimensional internal space which is non-compact
with finite volume. The sigma model sector of Type IIB supergravity has also been utilized
in finding an instanton solution dual to a 7-brane [24]. Supersymmetric two dimensional
tear-drop solutions in ungauged D < 10 supergravities are also known [23, ¥, [[4, [[5,
P4]. More recently, the general form of the supersymmetric solutions in ungauged 4D
supergravities, including their coupling to hypermatter, have been provided in [P7)].

In the case gauged supergravities, a solution of the matter coupled N = (1,0) gauged
supergravity in 6D called 'the superswirl’ has been found in [Bg] where two hyperscalars
are activated. One of these scalars is dilatonic and the other one is axionic. Supersymmet-
ric domain-wall solutions of maximal gauged supergravities in diverse dimensions where
only the dilatonic scalars of the sigma model are activated have appeared in [RY]. Super-
symmetric black string solutions of matter coupled N = 2, D = 3 gauged supergravity
exists in which only a single dilaton is activated in the Kahler sigma model sector [B(]. In
such models, supersymmetric solutions with the additional axionic scalars activated, have
also been found [B]-BJ. Finally, conditions for Killing spinors and general form of the
supersymmetric solutions in matter coupled gauged supergravities in N = 2, D = 5 super-
gravities have also been investigated [B4] but no specific solutions with multi-hyperscalars
activated seem to have appeared.

To summarize, we see that there exist only few scattered results on the nontrivial use
of gauged sigma models in supergravity theories in finding exact supersymmetric solutions.
As stated earlier, one of our goals in this paper is to take a step towards a systematic
approach to this problem. We shall come back to this point in the Conclusions.

Turning to the tear-drop solutions, a key feature in these backgrounds is the identity
map by which the scalars of the sigma model manifold are identified with those of the
internal part of the spacetime. The brief summary of literature above only dealt with
solutions that have supersymmetry. The idea of identity map, on the other hand, was
first proposed by Omero and Percacci [Bg] long ago in the context of bosonic sigma models
coupled to gravity. This work was generalized later in [Bf]. Several more papers may well
exist that deal with the solutions of sigma model coupled ordinary gravities, as opposed
to supergravities, but we shall not attempt to survey them since our emphasis is on gauge
supergravities with sigma model sectors in this paper.

After the description of the matter coupled 6D supergravity in the next section, the



conditions for the existence of Killing spinors, and their integrability conditions will be
presented in sections [ and [, respectively. The new dyonic string solution and its properties
are then described in sections | and [}, respectively. The summary of our results that
emphasizes the key points, and selected open problems are given in the Conclusions. Three
appendices that contain our conventions and useful formulae are also presented.

2. The model

2.1 Field content and the quaternionic Kahler scalar manifold

The six-dimensional gauged supergravity model we shall study involves the combined
N = (1,0) supergravity plus anti-selfdual supermultiplet (g,., B, ¢, 1/);:‘+, 1), Yang-Mills
multiplet (A, )\_‘ﬁ) and hypermultiplet (¢“,1®). All the spinors are symplectic Majorana-
Weyl, A = 1,2 label the doublet of the R symmetry group Sp(1)g and a = 1,...,2ngy labels
the fundamental representation of Sp(ng). The chiralities of the fermions are denoted by
=+.

The hyperscalars ¢%, a = 1,...,4ny parameterize the coset Sp(ng,1)/Sp(ng) ®
Sp(1)g. This choice is due to its notational simplicity. Our formulae can straightforwardly
be adapted to more general quaternionic coset spaces G/H whose list can be found, for
example in [B7. In this paper, we gauge the group

K x Sp(1)r C Sp(ng,1), K CSp(ng) . (2.1)

The group K is taken to be semi-simple, and the Sp(1)g part of the gauge group can
easily be replaced by its U(1)g subgroup.

We proceed by defining the basic building blocks of the model constructed in [}] in
an alternative notation. The vielbein V.24, the Sp(ng) composite connection Q% and the
Sp(1)r composite connection QéB on the coset are defined via the Maurer-Cartan form as

L0 = VAT, A+ 3 QT + 3 QP Tup, (2.2)
where L is the coset representative, (Tup, Tap,iTaa) = T35 obey the Sp(ng, 1) algebra

Tap:Tepl = —QpeTap — LieTep — LepTac — LanTae

eap O
Qs = . 2.
A ( 0 Qab> (2:3)

The generator Ty 4 is hermitian and (T'ap, T,p) are anti-hermitian. The vielbeins obey the

following relations:
9as VoV = Quean,  VAVIP fa o g =gk (2.4)

where g, is the metric on the coset. Another useful definition is that of the three quater-

nionic Kahler structures given by

VAVSP — A B=2J27. (2.5)



Next, we define the components of the gauged Maurer-Cartan form as
L7'DyL = P Ton + 3 Q¥ T + 1 Q1P Tus (2.6)
where
Il
D,L = (OH - AT ) L, (2.7)
Aﬁ are the gauge fields of K x Sp(1)g. All gauge coupling constants are set equal to unity

for simplicity in notation. They can straightforwardly be re-instated. We also use the
notation

T = (1", 17, T, =2TAP Ty, Thp=—%o0hp, r=123. (2.8)

The components of the Maurer-Cartan form can be expressed in terms of the covariant

derivative of the scalar fields as follows [B]
Pit = (Dug™)Vat s Qi = (Dud™)QE = A7 Q7 = (Dud™)Q3" — 437, (29)

where

Dy¢®™ = 09" — ALK (2.10)

and K!(¢) are the Killing vectors that generate the K x Sp(1)g transformations on G/H.
Other building blocks to define the model are certain C-functions on the coset. These
were defined in [J], and studied further in [B§] where it was shown that they can be expressed

as
L'T'L = ¢ = ¢ 0 + $CT 4B Ty + 1O T, (2.11)

Differentiating and using the algebra (R.3) gives the useful relation
DLCT = (PepCTAB 4 BuACT™) Tyy + PAACIE Tap + PRACT 5 Ty . (212)
Moreover, using (B.6) and (£.9) we learn that
KIaVaA — CIaA KIaQab Clab 6II/TIab KIaQAB CIAB 517’ TAB (2 13)
« ) [ . .

Finally, it is straightforward and useful to derive the identities

Dy Pyt = -3 Fi 0l (2.14)
PiAPYa = $ Qi + 1F,C1, (2.15)
P APt =1QN + ik, (2.16)

2.2 Field equations and supersymmetry transformation rules

The Lagrangian for the anomaly free model we are studying can be obtained from [ or [J.
We shall use the latter in the absence of Lorentz Chern-Simons terms and Green-Schwarz
anomaly counterterms. Thus, the bosonic sector of the Lagrangian is given by [f]

1 1
e 'L=R —10p) - £€% GG — Le2? Fl FI —2psA Pl — 46729 CLpCTAP
(2.17)



where the Yang-Mills field strength is defined by F! = dA’ + %f”KAJ A AK and G obeys
the Bianchi identity
dG = 1FTANFT. (2.18)

The bosonic field equations following from the above Lagrangian are [
Ry = 30,0 0,0 + 4027 (I3, — L2 g,) + 1e# (G2, — §GP g,0)
“2PEAP 4+ B (ChpCTP) g
Oy = ie%‘p F? + %e*" G? — 46_%“" CﬁBCJAB
Dp(e%v F'*,) = 5¢* F'PGooy + 4P5AC£A )
V,(?GP) =0,

1
D, P'A = 4e”3901ABCIa (2.19)

where we have used a notation V;%u = u>\2--->\pvu)\2"'>\p and V2 = 9"V, for a p-form V,
and F?2 =F, ;fVF #I - The local supersymmetry transformations of the fermions, up to cubic
fermion terms that will not effect our results for the Killing spinors, are given by

l 14
§hy = Dye + 5€2%G;, TP T, (2.20)
1
oy = 1 (I’“(?“gp - §€2°G,,,, F“””) £, (2.21)
1
SNy = —§F|,"ey — e 29Chp e¥ (2.22)
5" = PiATVey (2.23)

where D,ea =V, ea+Qpu 4Bep, with V. containing the standard torsion-free Lorentz
connection only. The transformation rules for the gauge fermions differ from those in [g
by a field redefinition.

3. Killing spinor conditions

The Killing spinor in the present context is defined to be the spinor of the supersymme-
try transformations which satisfies the vanishing of the supersymmetric variations of all
the spinors in the model. The well known advantage of seeking such spinors is that the
necessary and sufficient conditions for their existence are first order equations which are
much easier than the second order field equations, and moreover, once they are solved,
the integrability conditions for their existence can be shown to imply most of the field
equations automatically. In deriving the necessary and sufficient conditions for the exis-
tence of Killing spinors, it is convenient to begin with the construction of the nonvanishing
fermionic bilinears, which provide a convenient tool for analyzing these conditions. In this
section, firstly the construction and analysis of the fermionic bilinears are given, and then
all the necessary and sufficient conditions for the existence of Killing spinor are derived.



3.1 Fermionic bilinears and their algebraic properties
There are only two nonvanishing fermionic bilinears that can be constructed from commut-
ing symplectic-Majorana spinor €. These are:
EAFMEB = VMGAB,

_A B _ AB

e Lpvpe” = X, 177 . (3.1)
Note that X" is a self-dual three-form due to chirality properties. From the Fierz identity

B0 .

Fﬂ(aﬁr'y)é = 0, it follows that

ViV, =0, iv X" =0. (3.2)
Introducing the orthonormal basis
ds® = 2ete™ + el (3.3)
and identifying
et =V, (3.4)
the equation iy X" = 0 and self-duality of X" yield
X"=2VAI", (3.5)
where
I" =3I ' Ne (3.6)

is anti-self dual in the 4-dimensional metric ds? = e’e’. Straightforward manipulations
involving Fierz identities imply that I are quaternionic structures obeying the defining
relation

(1) (1) = 41y = 6785 (3.7)

Finally, using the Fierz identity I, (@ BP: )5 = 0 once more, one finds that
V,Ie=T%e=0. (3.8)

If there exists more than one linearly independent Killing spinor, one can construct as many
linearly independent null vectors. In this case (B.§) is obeyed by each Killing spinor and
the corresponding null vector, i.e. V;I’“el =0, VMQFMEQ = 0, but it may be that VJFMEQ #£0
and /or Vil““el # 0. In that case, (B.§) should be relaxed since € should be considered as
a linear combination of €; and es.

3.2 Conditions from s\ =0
Multiplying (R-23) with é?I'”, we obtain

ivFT =0, (3.9)
.. 1
FHMI = 4e72% 01 (3.10)



The second has been simplified by making use of (B.9) and (B.§). Multiplying (B.29) with
ePr Arp> On the other hand, gives

1
FIANV +%(FIAV) +2e29CT"X" =0, (3.11)

1
3plo r 1 rst_—59 syt
F + 56 %e 27C°X

. L, =0. (3.12)

One can show that these two equations are identically satisfied upon the use of (B.9) and
(B.10), which, in turn imply that F' must take the form

1 ~
Fl=—e2?CI' " + FI 4V AW, (3.13)

where F1 = %ﬁf] et A el is self-dual, and w! = wi[ e¢'. Reinstating the gauge coupling
constants, we note that the C-function dependent term will be absent when the index I
points in the direction of a subgroup of K C Sp(2ny) under which all the hyperscalars are
neutral.

Substituting (B.13) into the supersymmetry transformation rule, and recalling (B.§),
one finds that (2.22) gives the additional conditions on the Killing spinor

(31165 —T™5) = 0. (3.14)

The contribution from F drops out due to chirality-duality properties involved. Writing
this equation as O"e = 0, one can check that [O", O%] = €"$'O!. Thus, any two projection
imply the third one.

In summary, the necessary and sufficient conditions for 6A! = 0 are (B.13) and (B-19).

3.3 Conditions from 4§y =0

This time multiplying (B.29) with é® and €°T, gives rise to four equations which can be
shown to imply

vepid =0, (3.15)

P = 21" (T4 5 PIE (3.16)
Using (2.9) and (.9), we can equivalently reexpress the second equation above as
Di¢™ = (I")? (J")5* D" . (3.17)

Writing (B.1§) as P* = OP?, we find that (O — 1)(O — 3) = 0. Thus, (B.16) implies
that P® is an eigenvector of O with eigenvalue one. Moreover, using (B.14) directly in the
supersymmetry transformation rule (2:29), and using the projection condition (B.14), we
find that Jy¥® = 3§y®, and hence vanishing.

In summary, the necessary and sufficient conditions for 9 = 0 are (B.1Y), (B.16) (or
equivalently (B.17)), together with the projection condition (B.14).



3.4 Conditions from dxy =0

The analysis for this case is identical to that given in [@], so we will skip the details,
referring to this paper. Multiplying () with € and €PTI'y, gives four equations which
can be satisfied by

VFO,p =0, (3.18)

and parametrizing G~ as
1
e2YGT=L1—-%)[VAe Adp+V AK], (3.19)

where « is the Hodge-dual, K = %Kij e’ A el is self-dual. In fact, these two conditions are
the necessary and sufficient conditions for satisfying dx = 0.

3.5 Conditions from 4y, =0
Multiplying (B-20) with €', we find

1
ViV = =329 Gl V", (3.20)

which implies that V* is a Killing vector. Similarly, multiplying (2.20) with €l')po gives an

expression for V, X/, ,. Using (B:20) one finds that this expression is equivalent to

1
DIl = e2°GH i Ty (3.21)

where D, I" =V, I" 4+ €' Q% I". One can use (B.21) to fix the composite Sp(1)z connection
as follows
QL = Ler G\ — LSty It (3.22)
Manipulations similar to those in [[§] shows that, using (B.14) and (B.2(), the variation
01, = 0 is directly satisfied, with € constant, in a frame where I}; are constants.
In summary, the necessary and sufficient conditions for d¢, = 0 are (B.20), (B-21),

together with the projection condition (B.14).

4. Integrability conditions for the existence of a Killing spinor

Assuming the Killing spinor conditions derived in the previous section, the attendant in-

tegrability conditions can be used to show that certain field equations are automatically

satisfied. Since the field equations are complicated second order equations, it is there-

fore convenient to determine those which follow from the integrability, and identify the

remaining equations that need to be satisfied over and above the Killing spinor conditions.
Let us begin by introducing the notation

~ I SN A
0, = Dye, ox = %Ae, N =e 27A'€, p* = Aey (4.1)
for the supersymmetry variations and

lgo Tuv Iv naA aA
Ru =Ju, Op=J, Du(e2?Fmy=jlv D, prad— oA (4.2)



for bosonic field equations. Then we find that
~ 1
TH[D,, Alle? = 2| D, (e2?Fm) — JI”] r,et
1
+e27 (D, F),) et — 8T (D, C1AP 420194 P, B)) e
1
—2[A, AJe? + 229 F, T (6x ) + 16074 (51
1
+8¢2% fITR ATTH(GAKA) | (4.3)
I¥[Dy, Aeq = (D P4 — J*) ey
+T# (D, Pt = L), CTY) ea
1
—40T9 A (AL — 429G, TP (697) (4.4)
~ 1
I“D,,Alea = 0o — J)ea — 3¢ 29D, (e?GH,,)) [VPen

1
_1,39mrp0 _3pl p!
ge2'l (quvm 4F;wFpo)€A

ltp I v I IB 1 ltp v,
— | e2PF, " eap +8Cyp | N7 + 527Gyl (6xa) , (4.5)

1
IY[Dy, Dy)e* = 3 (R — Jow) TV + e 29V (e9G,pp ) TP7T e

1
+ 52 TPV (V,Gorr — SFL L)

v

+ (Qf}B +FLCMP - 2P[‘LAP,,]GB> Iep
1 1 ltp vpo A aA
+§ (9“(,0 =+ EGQ Gypgf FH (5X + 2P/J ((5’[/}(1)
1
—1e2¥ [(TVPT, — 401 TP F) P —T,0T45] 67} . (4.6)

If one makes the ansatz for the potentials directly , then the Bianchi identities and
the relations (R.19) and (R.14)-(R.10) are automatically satisfied. Otherwise, all of these
equations must be checked. Assuming that these are satisfied, from ({.3) it follows that
the Yang-Mills field equation K, = 0, except for K = 0, is automatically satisfied, as can
be seen by multiplying K MI—WEA =0 by €® and K, T, recalling I't e = 0 and further simple
manipulations. Similarly, from (f.4) it follows that the hyperscalar field equation K ad —
is automatically satisfied as can be seen by multiplying K%'e4 = 0 by égI'*. Finally, from
#.3) and (I.6), it follows that the dilaton and Einstein equation E,,, = 0, except E4 = 0,
are automatically satisfied, provided that we also impose the G-field equation. This can
be seen by multiplying E,,["Ve4 = 0 with ég and E,,I'” and simply manipulations that
make use of I'f'e = 0.

,10,



In summary, once the Killing spinor conditions are obeyed, all the field equations are
automatically satisfied as well, except the following,

1
Riy=Juy,  Du(e2?Fy)=Jl,  D,(e?G"?) =0, (4.7)

and the Bianchi identities DF! = 0 and dG = %FI A FTL.

It is useful to note that in the case of gravity coupled to a non-linear sigma model,
the scalar field equation follows from the Einstein’s equation and the contracted Bianchi
identity only when the scalar map is a submersion (i.e. when the rank of the matrix d,,¢“
is equal to the dimension of the scalar manifold). In our model, however, the scalar
field equation is automatically satisfied as a consequence of the Killing spinor integrability
conditions, without having to impose such requirements. This is all the more remarkable
given the fact that there are contributions to the energy-momentum tensor from fields
other than the scalars.

Finally, in analyzing the set of equations summarized above for finding a supersym-
metric solution, it is convenient to parametrize the metric, which admits a null Killing
vector, in general as [[[7]

ds* = 2H Y (du + 3) <dv +w+ g(du + ﬁ)) + Hds%, (4.8)
with
et = H Y (du+p),
e” =dv+w+3FHe",
e = HY?e, dy” (4.9)

where dsQB = hagdyadyﬁ is the metric on the base space B, and we have § = (B,dy® and
W = Wedy® as 1-forms on B. These quantities as well as the functions H and F depend on
w and y but not on v. Now, as in [[7, defining the 2-forms on B by

Jr=H'I", (4.10)
these obey
()% (J°)1 = () — 57005 (411)
where raising and lowering of the indices is understood to be made with h,g. Note that
the index a = 1,...,4 labels the coordinates y“ on the base space B. This should not
be confused with the index a = 1,...,ngy that labels the coordinates ¢® of the scalar
manifold!
A geometrically significant equation satisfied by J” can be obtained from (B:21), and
with the help of (B.20) it takes the form [[§],
Vidfy + €5 Q5 Th — Bid 1. — By iy + 08" Tfjm = 0, (4.12)

where V; is the covariant derivative on the base space B with the metric dsQB and 3 = 9,0.

— 11 —



5. The dyonic string solution

For the string solution we shall activate only four hyperscalars, setting all the rest equal
to zero. In the quaternionic notation of appendix B, this means

¢
0
t=1| . (5.1)
0
In what follows we shall use the map
¢ = ¢" = ¢ (0a)", (5.2)

where o, = (1, —id) are the constant van der Wardeen symbols for SO(4). Moreover, we

shall chose the gauge group K such that
T't=0. (5.3)

This condition can be easily satisfied by taking K to be a subgroup of Sp(ng — 1) which
evidently leaves ¢ given in (@) invariant. Finally, we set

All=0. (5.4)

Then, supersymmetry condition (B.13) in I’ direction is satisfied by setting FI'=0=uw"
and noting that C'" = 0 in view of (53) (see (B:10)). The supersymmetry condition (B-16)
is also satisfied along the directions in which the hyperscalars are set to zero. Therefore, the
model effectively reduces to one in which the hyperscalars are described by Sp(1, 1)/ Sp(1) x
Sp(1), which is equivalent to a 4-hyperboloid Hy = SO(4,1)/SO(4).

Using (5.9) in the definition of Dt given in (B.§), we obtain

Du¢™ = 0u¢™ — 3A4,,(0")%5 ¢, (5:5)
where the 't Hooft symbols p™ are constant matrices defined as
Pop = tr (0o T" Gp) . (5.6)

These are anti-self dual and their further properties are given in appendix A.
For the metric we choose

5=0, w=0, F=0, hap = Q%00 (5.7)
in the general expression (f.§), so that our ansatz takes the form
ds* = 2H Vdudv + Hds%,  ds% = Q%dy*dy®d.s, (5.8)
where Q is a function of y? = yayﬁéag. We also choose the null basis as

et =V =H1du, e =dv. (5.9)
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Thus, V0, = 0/0v. Moreover, in the rest of this section, we shall take all the fields to be
independent of u and v. Given that § = 0, it also follows from (4.12) that

Vidf +€5Q5 0l =0. (5.10)
Next, in the general form of G(~) given in (B.19), we choose
K=0. (5.11)

Then, from (B.19) and (B.2Q) we can compute all the components of G* and G~, which
yield for G = G* + G~ the result

G=e % (et Ae™ Adpy +*adp_) (5.12)
where x4 refers to Hodge dual on the transverse space with metric
ds? = Hds% , (5.13)

and we have defined
¢pr = tio+In H . (5.14)

Next, we turn to the supersymmetry condition (B.17) in the hyperscalar sector. With our

ansatz described so far, it can now be written as
Dig* = (") (J") 5% D;¢”, (5.15)

where

D;¢p% = D™ V. &, (5.16)
and V,2 is the vielbein on Hy, and the above equations are in the basis
e =6 Qdy”, (5.17)
referring to the base space B. We also note that
Thg = phgdadl, (5.18)

which follows from rom ([C.2) and (@) Recall that the 't Hooft matrices pj, 5 are constants.
Next, we choose the components of J[j to be constants and make the identification

Jr=Jr . (5.19)
Using the quaternion algebra, we can now rewrite (p.15) as
Di¢g = (0iad;s — djadig — €ijas) Dida - (5.20)
Symmetric and antisymmetric parts in ¢ and 3 give
Di¢' =0, ¢'=¢*6,, (5.21)

D;¢; — Djp; = —€;510Di 0y (5.22)
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To solve these equations, we make the ansatz

" =fy*,  AL=gpsy’, (5.23)

where f and g are functions of y2. This ansatz, in particular, implies that the function w”
arising in the general form of F" given in (B.13) vanishes. Assuming that the map ¢® is 1-1,
one can actually use diffeomorphism invariance to set (at least locally) f = 1. However,
since we have already fixed the form of the metric as in (f.§), chosen a basis as in (5.17), and
identified the components of the quaternionic structures jzz referring to this orthonormal
basis, the reparametrization invariance has been lost. Therefore it is important to keep the
freedom of having an arbitrary function in the map (f.29).
Using (5.23) we find that (5.22) is identically satisfied and (f.21)) implies

_AfYy +8fF

- 3fy? 7
where prime denotes derivative with respect to argument, i.e. y?. Next, the computation
of the Yang-Mills field strength from the potential (5.29) gives the result

(5.24)

Fr=F®4 ) pré—gu (5.25)
FI) = (—29 — g + 10%%) Pl
Fi5D = Fig = 29 +6%) (209 plys + 397 0ls) -

Comparing these results with the general form of F! given in (B:13), we obtain

o
€<p = W s (526)

where
n=(9yv*+ 29— 19°y%) (1 - %) . (5.27)

Here we have used the fact that C™* = "% /(1 — ¢?) as it follows from the formula (B:).
Finally using the composite connection ([C.4) in (b.10) we obtain

Q (2f*—y9)

—_— = 5.28
Q20 ) 525
This equation can be integrated with the help of (f.24), yielding
b /11— £22\ Y3
o=t ( Zny > 7 (5.29)
y I2y

where b is an integration constant. One can now see that all necessary and sufficient
conditions for the existence of a Killing spinor on this background are indeed satisfied. As
shown in the previous section, the integrability conditions for the existence of a Killing
spinor imply all field equations except ({.7) and the Bianchi identities on F! and G. It is
easy to check that ([.7) is identically satisfied by our ansatz, except for the G-field equation.
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Furthermore, the Yang-Mills Bianchi identity is trivial since we give the potential. Thus,
the only remaining equations to be checked are the G-Bianchi identity and the G-field
equation. To this end, it is useful to record the result

B0 16Q’

\/9_4 07;,8F':5 - y2H2§24 ’ (530)
where g4 is the determinant of the metric for the line element ds?, and

Q= (9v°)*(9y* = 3) + ¢, (5.31)

where c is an integration constant. Interestingly, this term is proportional to the sum of of
F? and C? terms that arise in the dilaton field equation, up to an overall constant.

We now impose the G-field equation d(e® x G) = 0 and the G-Bianchi identity dG =
%F " A F". The G-field equation gives

Oupt + 300 90%04 = 0, (5.32)

and the G-Bianchi identity amounts to

—20Q)

Cyp- — 20,00%_ = —2—
49 204@ 2 y2H2947

(5.33)

where the Laplacian is defined with respect to the metric (5.1J). These equations can be
integrated once to give

SD/ _ ve ¥ SD/ _()‘_% )
) T )

where v, \ are the integration constants, ¢ has been absorbed into the definition of A\, and

(5.34)

(6.26) has been used in the form HQ? = ne?/2. These equation can be rewritten as

v F2y2 2/3

(e7t) = 2 <1_7nyQ> ; (5.35)
D Qi £242 2/3

(e”-) = b22 (1 _?@2) 7 (5.36)

by recalling ¢ = ¢, — ¢_, exploiting (5.26) and using the solution (5.29) for Q. It is
important to observe that the second equation in (5.34), has to be consistent with (5.24).
Differentiating the latter and comparing the two expressions, we obtain a third order
differential equation for the function f:

, 9 2 _ A — lQ
()t

In summary, any solution of this equation for f determines also the functions (¢, H, (2, g),

and therefore fixes the solution completely. This is a highly complicated equation, however,
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and we do not know its general solution at this time. Nonetheless, it is remarkable that an
ansatz of the form
a
f=r5. (5.38)

with a a constant, which gives g = 4/(3y?) from (f.24), does solve (f.37), and moreover, it
fixes the integration constant

A=-3%. (5.39)
Furthermore, it follows from (5.29), (5.26), (5.27) and (5.39) that

b 24\ > 2
Q= Gh, e = <3—‘;) et = v () R (5.40)

where v is an integration constant and

Il
[N}

®M|@

h ~1. (5.41)

Thus, the full solution takes the form

1 1 1.1 b2
ds? = e 29+ e 29 (—dt? + da?) + e2¥Te2¥- <?> B2 dydyP bop,  (5.42)
ay®
ef = eft [ef | P = —%5, (5.43)
(0
Ar = A8 5.44
a = 3—y2p°‘5y ) (5.44)
8 § —¥P+
Gaﬁ'y = W €aByslY G+fa = —0qe ’ (545)

with ¢ given in (F.40). The form of h dictates that a? < y? < oo, covering outside of a
disk of radius a. The hyperscalars map this region into H* which can be viewed as the
interior of the disk defined by ¢? < 1. These scalars are gravitating in the sense that their
contribution to the energy momentum tensor, which takes the form (trP;P; — %gijtrPQ),
does not vanish since the solution gives

pyied ,
pAA — ﬁ (5;* - 4y;y2 ) A4 (5.46)
s

It is possible to apply a coordinate transformation and map the base space into the
disc by defining

ay®
2% ==, 5.47
) (5.47)
In 2% coordinates the solution becomes
1 1 1 1
ds? = e"2%+e 29 (—dt? + da?) + L%e29+ €29~ h2/3 (dr?® + r2dQ2) (5.48)
e¥ = e¥t fe¥ | (5.49)
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G = Q3 —dt Ndx Nde %+, (5.50)
AT = %’I“QO'E, (5.51)
P = 2%, (5.52)

where

1
r=4/2%20043, Q3 =0h ANoRAoh, h:ﬁ—l, (5.53)

et = 31/[};1/3 + 1w, efm = 4;%23, (5.54)
and L = b/a. Here, o}, are the right-invariant one-forms satisfying
dofy = St o N oty (5.55)
and €3 is the volume form on S3. We have also used the definitions
2% =rn%, nnP s =1, (5.56)
where dn® are orthogonal to the unit vectors n® on the 3-sphere, and satisfy
dn® = Lps0%n?,  dn®dn’s,5 = 1d0} . (5.57)

Given the form of A" it is easy to see that the Yang-Mills 2-form F" = dA” — %emtAS N A
is not (anti)self-dual, as it is given by

F' =%rdr Ao+ 3r® (1 20%) €0}, Aol (5.58)

The field strength PZA/A on the other hand, takes the form

! 1 !
A'A AA
P = T2 [(1 — §r2)5§)‘ + %rQnmo‘] ol . (5.59)

We emphasize that, had we started with the identity map ¢“ = 2% from the beginning,
the orthonormal basis in which j{; are constants would be more complicated than the one
given in (B.17). Consequently, (5.2§) would change since it uses (p.10) that requires the
computation of the spin connection in the new orthonormal basis.

6. Properties of the solution

6.1 Dyonic charges and limits

To begin with, we observe that the solution we have presented above is a dyonic string
with with fized magnetic charge given by

8
Qm = . G= EUOZS3 . (6.1)
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The electric charge, however, turns out to be proportional to the constant parameter v as
follows:

Qe = / *e¥G = 2vvolgs . (6.2)
S3

Next, let us compare our solution with that of [R1] where a dyonic string solution of the
U(1)r gauged model in the absence of hypermatter has been obtained. We shall refer
to this solution as the GLPS dyonic string. To begin with, the GLPS solution has two
harmonic functions with two arbitrary integration constants, as opposed to our single
harmonic function h with a fixed and negative integration constant. In our solution, this
is essentially due to the fact that we have employed an identity map between a hyperbolic
negative constant curvature scalar manifold and space transverse to the string worldsheet.

Next, the transverse space metric ds? in the GLPS solution is a warped product of a
squashed 3-sphere with a real line, while in our solution it is conformal to R*. In GLPS
solution the deviation from the round 3-sphere is proportional to a product of U(1) gauge
constant and monopole flux due to the U(1)r gauge field. Thus, assuming that we are
dealing with a gauged theory, the round 3-sphere limit would require the vanishing of the
monopole flux, which is not an allowed value in GLPS solution.

As for the 3-form charges, the electric charge is arbitrary in the GLPS as well as our
solution. However, while the magnetic charge in the GLPS solution is proportional to k{/gr
where k is the monopole flux, gr is the U(1)g coupling constant and & is the squashing
parameter, and therefore arbitrary, in our solution the magnetic charge is fixed in Planckian
units and therefore it is necessarily non-vanishing. This is an interesting property of our
solution that results from the interplay between the sigma model manifold whose radius is
fixed in units of Plank length, which is typical in supergravities with a sigma model sector,
and the four dimensional space transverse to the the string worldsheet.

Our solution has SO(1,1) x SO(4) symmetry corresponding to Poincaré invariance
in the string world-sheet and rotational invariance in the transverse space!. The metric
components exhibit singularities at » = 0 and r = 1. Too see the coordinate invariant
significance of these points, we compute the Ricci scalar as

A8(A + po)? + i

N
ré (5)18

where A = 31/(%2 —1) and pug = pL?. We see that, near the boundary r — 1, the Ricci

R:

: (6.3)
(A + )3

scalar diverges, and there is a genuine singularity there. Since the total volume in the base
space is finite, one would expect this singularity can be reached by physical particles at a
finite proper time, and we have checked that this is indeed the case. Nonetheless, recall
that the boundary is not included in the base space in view of the identity map (f.53) with
¢? = r? < 1. Near the origin r=0, the issue of singularities depends on the parameter v. If
v # 0, then as r — 0 the Ricci scalar approaches the constant value 8/ V/3v. The metric is

1t is clear that if one makes an SO(4) rotation in 2% coordinates, the same transformation should be
applied to hyperscalars and 't Hooft symbols pg, 5 to preserve the structure of the solution.
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perfectly regular in this limit, and indeed, we find that it takes the form

R%er
2

5 + R3dO3, (6.4)

L2
ds® — = r?/3(—dt® + da®) +
Ry

which is AdSs x S3 with Ry = y/4r/3. This is to be contrasted with the GLPS solution
which approaches the product of AdS3 with a squashed 3-sphere.

The r = 0 point can be viewed as the horizon, and as is usually the case, our solution
also has a factor of two enhancement of supersymmetry near the horizon. This is due to
the fact that the condition (B.§), which reads H 'T'"e = 0 has to be relaxed since H ™!
vanishes in in the » — 0 limit. Note, however, that our solution at generic point has 1/8
supersymmetry to begin with, as opposed to 1/4 supersymmetry of the GLPS solution.

For v = 0, the r — 0 limit of the metric is

L 2L
ds® — 23— P13 (—dt? + da?) + T\% 23 (dr? 4 r2dQ3), (6.5)

N

5/6

Defining furthermore du = dr/r°/® the metric becomes

ds® ~ u?(—dt* 4 dz® + dQ3) + du?. (6.6)

Ignoring x and €23 directions, this describes the Rindler wedge which is the near horizon
geometry of the Schwarzcshild black hole. The “horizon”, which has the topology R x (3,
shrinks to the zero size at v = 0 and this gives the singularity in the dyonic string.
Next, consider the boundary limit in which r — 1. First, assuming that vy # 0, we
find that in the limit » — 1 the metric takes the form
1 4 1
ds? ~ 7 (—dt2 + da? + u*(du® + = dQ§)> for vy #0, (6.7)
where we have defined the coordinate v = h'/? and rescaled the string worldsheet coordi-

nates by a constant. For vy = 0, on the other hand, the » — 1 limit of the metric is given
by

1 1
ds? ~ —7 (=dt* + da®) + u* <du2 +— dQ§> for vy =0, (6.8)
u

where, again, we have defined u = h'/2 and rescaled coordinates by constants.

6.2 Coupling of sources
Since the solution involves the harmonic function h, there is also a possibility of a delta
function type singularity at the origin since

D00 h = —47%5(Z) . (6.9)

The presence of such a singularity requires addition of extra sources to supergravity fields
to get a proper solution. As it is not known how to write down the coupling of a dyonic
string to sources, and as we cannot turn off the magnetic charge, we consider the coupling

of the magnetic string to sources. Thus setting v = 0, from (5.48), (5.49) and (5.53) the
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dangerous fields that can possibly yield a delta function via (.9) are the metric, the dilaton
¢ and the three form field G. Indeed from (p.59) we see that

dG ~ 6(2)dzt Ad22 A d2B A de?, (6.10)

therefore extra (magnetically charged) sources are needed for G at Z = 0. For the dilaton
we find that the candidate singular term near Z = 0 behaves as

Op ~ 2'136(2) — 0, (6.11)

thus there is no problem at zZ= 0. Finally for the Ricci tensor expressed in the coordinate
basis we find

Ryt = —Ryp ~ 2*6(2) — 0, (6.12)
Rop ~ 226(2)0ap — 0 . (6.13)

Contracting with the metric one can see that the possible singular part in the Ricci scalar
becomes
R~ z13§(2) =0, (6.14)

and thus there appears no extra delta function singularity.
The above results can be understood by coupling to supergravity fields a magnetically

charged string located at r = 0 with its action given by
S = —/dzae“"/zx/—w%—/g, (6.15)

where 7 is the determinant of the induced worldsheet metric and B is the 2-form potential
whose field strength is dual to G. This coupling indeed produces exactly the behavior

(6-10) in the Bianchi identity. The source terms in (f.1])) and (6.1]) are also produced,
while the contribution to the right hand side of (f.13) vanishes identically (which does not

causes a problem since 22§(Z) vanishes at z = 0 as well).

6.3 Base space as a tear-drop

Q

The four dimensional base space for our solution (p.4§) is

2 2 1 &/ 2 2 2
dsgp = L r_2_1 (dr® + r2d€3)
(1 _ T2)8/3
= W ds%ﬂ; s (616)

where dsfq4 = 2(dr? + r2dQ3)/(1 — r?)? is the metric on Hy, and its curvature scalar is

singular at r =0 and r = 1:

16 1 3

=3 B A (617

B
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Although the overall conformal factor blows at r = 0, the total volume of this space turns
out to have a finite value (473L*)/(9v/3). To that extent, our solution can be viewed as the
analog of the Gell-Mann-Zwiebach teardrop solution, though the latter is regular at r = 0
as well. The analogy with Gell-Mann-Zwiebach tear-drop is also evident in the fact that
the scalar metric has been conformally rescaled by a factor that vanishes at the boundary.

Another tear-drop like feature here is that the base space metric is conformally related
to that of H4 which has negative constant curvature, and that the curvature scalar of
the bases space becomes positive due to the conformal factor. This switching of the sign
is crucial for satisfying Einstein equation in the internal direction, just as in the case of
2-dimensional Gell-Zwiebach tear-drop.

The base space B that emerges in the 2 + 4 split of the 6D spacetime is quaternionic
manifold, as it admits a quaternionic structure. To decide whther it is Quaternionic Kahler
(QK), however, the standard definition that relies on the holonomy group being contained
in Sp(n) x Sp(1) ~ SO(4) becomes vacuous in 4D since all 4D Riemann manifolds have
holonomy group Sp(1) x Sp(1). Nonetheless, there exists a generally accepted and natural
definition of QK manifolds in four dimensions, which states that an oriented 4D Riemann
manifold is QK if the metric is self-dual and Einstein (see [B]] for a review). According to
this definition, our base space B is not QK since it is neither self-dual nor Einstein.

6.4 Reduction of metric to five dimensions

Finally, we would like to note the 5-dimensional metric that can be obtained by a Kaluza-
Klein reduction along the string direction. The 6-dimensional metric is parametrized in
terms of the 5-dimensional metric as

ds2 = eQa‘ids% + €299z (6.18)
where § = —3 and ¢ is the Kaluza-Klein scalar. From (b.48) one finds
2 -2, -2 2 o Lo, Yo o/3. 0 2 2

ds; = —e” 3¥te 3%~ dt° + L7e3%Te3¥"h / (dr® + dQ23), (6.19)

where the functions are still given in (p.54)).
The metric (6.19) is singular at » = 0. For v = 0 looking at the metric near the
singularity one finds

ds? ~ u?(—dt* + dQ3) + du?, (6.20)

where du = dr /r7/ 9. The geometry is like the Rindler space but the candidate spherical
“horizon” shrinks to zero size at u = 0 which produces a singularity. When v # 0, one
finds near r = 0 that

ds2 ~ —rS0d2 1 =16/9g,2 | 1219402 (6.21)

which is again singular at » = 0. This singularity is resolved by dimensional oxidation
which is a well known feature of some black-brane solutions [i(].
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7. Conclusions

In this paper, we have derived the necessary and sufficient conditions for the existence of
a Killing spinor in N = (1,0), 6D gauge supergravity coupled to a single tensor multiplet,
vector multiplets and hypermultiplets. This generalizes the analysis of [L] and [[L§] by the
inclusion of the hypermatter. In our case as well, the existence of the Killing spinor implies
that the metric admits a null Killing vector. This is in contrast to some other dimensions
such as D = 4,5 where time-like and space-like Killing vectors arise in addition to the null
one. The Killing spinor existence conditions and their integrability are shown to imply
most of the equations of motion. This simplifies greatly the search for exact solutions. The
remaining equations to be solved are (i) the Yang-Mills equation in the null direction, (ii)
the field equation for the 2-form potential, (iii) the Bianchi identities for the Yang-Mills
curvature and the field strength of the 2-form potential, and (iv) the Einstein equation
in the double null direction. We parametrize the most general form of a supersymmetric
solution which involves a number of undetermined functions. However, we do not write
explicitly the equations that these functions must satisfy. These can be straightforwardly
derived from the equations just listed.

The existence of a null Killing vector suggests a 2 + 4 split of spacetime, and search
for a string solution, possibly dyonic. Such solutions are already known but none of them
involve any active hyperscalar. As a natural application of the general framework presented
here, we have then focused on finding a dyonic string solution in which the hyperscalars
have been activated.

Indeed, we have found a 1/8 supersymmetric such a dyonic string. The activated scalars
parametrize a 4 dimensional submanifold of a quaternionic hyperbolic ball of unit radius,
characterized by the coset Sp(ng,4)/Sp(nm) x Sp(1)r. A key step in the construction of
the solution is an identity map between the 4-dimensional scalar submanifold and internal
space transverse to the string worldsheet. The spacetime metric turns out to be a warped
product of the string worldsheet and a 4-dimensional analog of the Gell-Mann-Zwiebach
tear-drop which is noncompact with finite volume. Unlike the Gell-Mann-Zwiebach tear-
drop, ours is singular at the origin. There is also a delta function type singularity that
comes from the Laplacian acting on a harmonic function present in the solution. This
does not present any problem, however, as we place a suitable source which produces
contributions to the field equations that balance the delta function terms.

An interesting property of our dyonic string solution is that while its electric charge
is arbitrary, its magnetic magnetic charge is fixed in Planckian units, and hence it is
necessarily non-vanishing. This interesting feature results from the interplay between the
sigma model manifold whose radius is fixed in units of Plank length, as it is the case
in almost all supergravities that contain sigma models, and the four dimensional space
transverse to the the string worldsheet through the identity map.

The tear-drop is quaternionic but not quaternionic Kahler, since its metric is neither
self-dual nor Einstein. The metric is conformally related to that of H4 which has negative
constant curvature, and its curvature scalar becomes positive due to the conformal factor.
This switching of the sign is crucial for satisfying Einstein equation in the internal direction,
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just as in the case of 2-dimensional Gell-Zwiebach tear-drop.

We have also shown to have 1/4 supersymmetric AdS3 x S® near horizon limit where the
radii are proportional to the electric charge. This is in contrast with the 1/4 supersymmetric
GLPS dyonic string that approaches the product of AdSs3 times a squashed 3-sphere with
1/2 supersymmetry. In GLPS solution the squashing is necessarily non-vanishing for non-
vanishing gauge coupling constant, while in our case the round 3-sphere emerges even in
presence of nonvanishing gauge coupling.

One might naively expect that a double dimensional reduction of our dyonic string
might yield a novel black hole solution in 5D with active hyperscalars. However, we find
that the resulting 5D metric has a naked singularity at the origin.

We conclude with mention of a selected open problems. The existence of the super-
symmetric dyonic string solution is encouraging with regard to the string/M theory origin
of the 6D model. The source couplings we have found may provide additional informa-
tion towards that end. The existence of black dyonic strings in the SU(2)z gauged theory
motivates a search for 'naturally’ anomaly free such models. We refer the reader to the
introduction for what we mean by 'natural’. In any event, the string/M theory of origin
of the matter coupled N = (1,0), 6D gauged supergravities remains a challenging open
problem.

Here, we have begun to uncover some universal features of supersymmetric solutions
in which the sigma models play a nontrivial role. For example, the emergence of tear-drop
like metrics in the space transverse to the brane. This is intimately related with another
potentially universal mechanism by which a submanifold of the sigma model is identified
with the transverse space. One possible generalization might involve more intricate maps
from the transverse space to sigma model. It would be useful to find further examples to
establish whether the features found here continue to persist in a larger class of supergravity
models with supergravity sectors.
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A. Conventions

We use the spacetime signature (— + + + ++) and set et =¥kl = ¢kl We define I'y =
012345 The supersymmetry parameter has the positive chirality: I';e = e. Thus, Lup =
% €L port I'°* 'z, and for a self-dual 3-form we have Suvpl'Pe = 0.

The Hodge-dual of a p-form

1
F= ol dxt A - dat Fy o, (A1)
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is calculated using

e =y e "

The 't Hoof symbols are defined as
Phg =t (0aT"G5),  nhg=tr(GaT" 0p), (A.3)
where o, = (1,—id) are the constant van der Wardeen symbols for SO(4). These are

real and antisymmetric matrices. It is easily verified that Pog 18 anti-selfdual, while ng/ﬁ is
selfdual. Their further properties are

Py (P°)7 3 = =660 + " plyg idem 77,5,

PasPhs = Oar0p5 — 0as0py — €aprs

Magys = Gary O35 — OasOy + €apys

€™ (0" )ap (P°)rs = gy (p')as + 3 more, idem ngﬁ . (A.4)
For SU(2) triplets, we use the notation:

XY =X"Th,, X =ilxP1y, (A.5)

B. The gauged Maurer-Cartan form and the C-functions

A convenient choice for the Sp(ng,1)/Sp(ng) x Sp(1) coset representative L is [[H]]

1t
L=~"1 (B.1)
t A
where ¢t is an ny-component quaternionic vector tP (p =1,...,ny), and
y=01—-tT)2, A=yT—-tthHV2. (B.2)

Here, I is an ny X ny unit matrix, and t refers to quaternionic conjugation, and it can be
verified that At = t. The gauged Maurer-Cartan form is defined as

Qu P
-1
L~ D,L= , (B.3)
P, QL
where D, L is given in (R.7), with 7" representing three anti-hermitian quaternions (in the
matrix representation of quaternions 7" = —io" /2) obeying
[T7,T%) = "'T" (B.4)
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and T represents a subset of ny x ng quaternion valued anti-hermitian matrices spanning
the algebra of the subgroup K C Sp(ny) that is being gauged. A direct computation gives

1 _
Qu =572 (Dutft —1tD,t) — A1 (B.5)
Q, =7 (—tDHtT +AD,A + %aﬂ(ﬁtﬂ) — ATl (B.6)
P, =~v2AD,t, (B.7)
where

Dyt =0t +tT AL, — AT ¢ . (B.8)

The C' functions are easily computed to yield

v Tt
C" = L7'T"L =72 (B.9)
—tT" —T"¢

—tl' il A
ol = '1"'L=~72 (B.10)
ATt ATIA

C. The model for Sp(1,1)/Sp(1) x Sp(1)g

This coset, which is equivalent to SO(4,1)/SO(4), represents a 4-hyperboloid Hy. In this
case we have a single quaternion ¢ = ¢“ o, and the vielbein becomes

VAA = 2 gAA (C.1)

a

It follows from the definitions (B-4) and (R.5) that

2
= _ ra=———8 2
et (e ()
We also introduce a basis in the tangent space of Hy
o \/5 (0%
V& = - oy - (C.3)
The Sp(1)r connection @}, can be found from (B.3) as
T T 1 ‘a (6% T
Q=2 (Q.T") = - (2Pa55u¢ ¢ — AM) : (C.4)
With the above results at hand, the Lagrangian can be written as
-1 1 2 1 ¢ uvp 1 ltp rooorpy 1 ltp v o' uy
e L=R —3(0p) — 5¥ GupyG"? — 3 e2¥ [} F"" — 1e2¥ I} F
1
4 @ 6e 2% 2 2 1212
NS D, ¢* D P 605 — A—¢2)2 L9 + 9" (67)7] (C.5)
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where the covariant derivatives are defined as

Dy = 96" — 3arAL(P) 5 0" — 59" AL ()5 07, (C.6)

and we have re-introduced the gauge coupling constants gg and ¢’. The supersymmetry

transformation rules are

1
0, = Dye+ e2¥G) TVPT, ¢, C.7
K K 48 vop K
1
oy =1 (F‘uaﬂgo - $€2°G,,,,, FWP) €, (C.8)
1,

N = —Lprpmwe, g €2 qu B C.9
A — T8t w €A gR1—¢2 AB € ()
, , 1 p2gP ,

SNy = —3F;, T"ey +g/€2“"1¢_¢¢2 (GaT" 05)ap €2, (C.10)
) 1 ,

where Dyeq = Vi, ea + QL(TT)ABsB, with V,, containing the standard torsion-free

Lorentz connection only, and Q" is defined in ({C.4).
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